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GOT SOMETHING TO SAY? 
WE’RE LISTENING!

We’ve all got stories to tell. If you’re a member of the 
Ontario Building Envelope Council, we want to hear about 
your encounters while on-the-job, from a difficult or usual 
project, to how your company worked collaboratively to 
resolve an issue, to an exciting new project you’re working 
on—or whatever you’d like to share.

We just might run your story in an upcoming issue of 
the magazine. Send a 100-word abstract to Daniel Aleksov 
(daniel@lebengineers.com) for consideration. If your idea 
is chosen, we’ll follow up with a word count and deadline.
*Submitting an idea does not guarantee publication.
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C omputationally automated standard-
ization and planarization1 are con-
sidered standard procedures when it 

comes to the design and fabrication of clad-
ding and glazing systems on buildings with 
complex curved geometry. While one could 
argue that in the age of CNC fabrication 
geometrical variations among discrete ele-
ments can be accommodated and organized 
with relative ease, auxiliary components such 
as stiffeners, brackets, sub-frames etc., may 
need to be highly customized to accommo-
date the dimensional and angular variations 
resulted from the curvature of the curved 
local element. This increases the complexity 
of the fabrication and installation, as well as 
wastage in the fabrication process.

This article looks at the three approaches 
that one can take for computational maximiz-
ation of standardization and planarization:
• Top-down: optimizing the global archi-

tectural surface in a way that maximizes 
the number of standardized and/or planar 
elements,

• Bottom-up: optimizing local façade 
elements (e.g., a panel) as such that they 

Free-form 
Façades:  
A Survey of 

Optimization, 

Documentation, 

and Fabrication 

Methodologies
By CK Dickson Wong and Ho Sung 
Kim, Inhabit Group
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become standardized as they are being 
populated across an architectural surface, 
and

• Bi-directional:2 optimizing both the global 
surface and local elements to achieve 
standardization and planarization.

TOP-DOWN 
On the simplest level, this can be done by 

opting for specific surface classes that permits 
the population of standardized and/ or planar 
elements (e.g. developable surfaces or transla-
tional surfaces). Another common approach 
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elements to approximate the global geom-
etry. The global geometry itself is not subject 
to significant adjustments with respect to 
standardization and planarization.

An example of the application of three-
point planar quad fitting is this curved glass 
wall of a convention centre (see Figure 2)  
which, like the Library at the Bao’An Cultur-
al Centre, also comprises of ruled surfaces. 

FEATURE n n n

to achieve standardization and planarization 
is through iterative form-finding on the global 
geometry level, with the objective of iterative 
form-finding is to arrive, as closely as possible, 
certain mesh or surface classes that allows the 
global geometry to be discretized into local 
planar quad elements. A well-documented 
example of such operation is aligning a given 
quad mesh to some versions of a conjugate 
curve network, from which a Planar Quadri-
lateral (PQ) mesh may emerge.3

The external sun-shading system of the 
Library at the Bao’An Cultural Centre in 
Shenzhen, China (see Figure 1) is one such 
example where a top-down approach is 
adopted. The façade of the building features 
an undulating sun-shading system that ‘bil-
lows’ in and out of the elevation plane. 

The designer opted for ruled surfaces as 
design surfaces because they curve only in one 
conjugate direction. As such, it was possible 
to align structural members (mullions in this 
case) along the direction of the straight gen-
eratrix, at a fixed spacing along the straight 
directrix. The generatrix, which rotated to 
form the surface curvature, was forced onto 
a plane that was perpendicular to the direc-
tion of the straight directrix (see Figure 1). 
More specifically, in order to control how far 
the façade bulges out, the second directrix of 
the ruled surface was formed by connecting  
line-arc segments. 

Through controlling the chord length of 
the line-arc segments the bulging distance 
was established. It is interesting to note that 
the distance between each façade compon-
ent along a mullion could be obtained from 
simply dividing the length of the mullion into 
equal parts. In other words, a simple two  
dimensional grid could be intuitively applied 
by the contractor. The design team used this 
as the basis to derive identification numbers, 
orientation, and geometry descriptions for the 
structural members as well as the diagonal 
sun-shading fins of the system. These pieces 
of information were compiled into a Geom-
etry Method Statement (GMS) that allows 
the future contractor to define and set out the 
geometry for fabrication and site installation 
purposes. The GMS formed part of the design 
documentation. 

BOTTOM-UP 
Another way to arrive at a desired set 

of standardized, planar local elements is by 
instantiation based on the parameters (e.g., 
corner coordinates, centroid, normal direc-
tion etc.) of the curved local elements dis-
cretized from the global geometry. A popu-
lar example of this approach is fitting three 
vertices of a quad panel on a curved surface 
and allowing its fourth vertex to deviate from 
the global geometry. The objective of this 
approach would be to aggregate planar local 

Figure 1. The Library at the Bao’An Cultural Centre in Shenzhen, China. Graphics courtesy of Rocco Design Architects Associates Ltd.

Figure 2. 
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However, while the Library used small 
metal fins fixed to parallel and equidistant 
mullions to form a decidedly textured ap-
pearance, the convention centre favoured a 
smooth appearance using planar or curved 
glass panels of larger modulations. 

The design team also wished to mini-
mize the number of glass panels using 
laminated insulated glass units (IGUs) that 

curve in two directions, which are fabricat-
ed using the curve annealed process (i.e., 
curving by slumping annealed glass into a 
mould under high temperature). That was 
because the technical complexities involved 
with curve annealing would have led to sig-
nificant cost and time implications. (Curved 
annealed glass panels cannot be tempered 
using conventional methods. Thicker an-
nealed glass would have to be used in lieu 
of thinner tempered glass in order to com-
pensate for the reduction in glass strength. 
Low-e coating options for heat-formed glass 
are limited, with restrictions on which sur-
face the coating can be applied on; mould 
customization can be costly, so is offline 
fabrication of large, curved, and laminated 
IGUs.) The optimization procedures for the 
system were as follows:
• Fitting planar glass panels of a suitable di-

mension to not compromise visibility due 
to glass division, while limiting how far the 
fourth vertex of the planar quad deviated 
from the reference surface.

• If the deviation was greater than a 
pre-set threshold, glass panels extracted 
from cylindrical surfaces of appropri-
ate radii would be fitted to the surface 
instead to reduce the panel’s deviation 
from the reference surface. Since the 
fabrication of glass panels curving in one 
direction using curve-tempering tech-
nology (i.e., heating, curving and rapidly 
cooling the glass to produce curved 

tempered glass, through a machine that 
can accommodate customized curves) 
is relatively cost-effective compared to 
curve annealing, it was adopted as an 
intermediate strategy before resorting 
to using curve-annealed, ‘doubly-curved’ 
glass panels. 

• Curve-annealed, ‘doubly-curved’ lamin-
ated IGUs would only be used when 
planar and cylindrical panels would not 
fit without deviating from the pre-set  
thresholds. 
An automated system was set up using 

the logic above to rapidly produce multiple 
options with different deviation thresholds, 
glass modulations and glass build-up during 
early design stages. 

This was proven to be a valuable exer-
cise, as the information generated from the 
automated exercise could be passed on to the 
cost consultant for real-time estimation. All 
stakeholders in the team were able to make 
informed design decisions using actionable 
information.

BI-DIRECTIONAL
Apart from top-down and bottom-up, it 

is also possible to take a bi-directional ap-
proach – while planar elements are being fit-
ted locally on the global geometry, the global 
geometry itself undergoes a series of itera-
tive adjustments using a proprietary physics 
engine4 based on quantifiable optimization 
objectives to facilitate discretization. 

Figure 2. 
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An example of the application of this 
methodology is this airport project in South-
east Asia (see Figure 3). The reference sur-
face generated by the designer is rectangular 
at the base and rises to an oculus at the cen-
tre. The architect intended to clad the roof 
with decorative hexagonal aluminium panels. 

The objectives of the exercise, therefore, 
were threefold:
1. From global to local: to modify the refer-

ence surface to facilitate the instantiation 
of standardized hexagonal elements.

2. From local to global: to perform fitting 
using a pre-determined number of sets of 
standard hexagonal elements. 

3. To assess the acceptable number of panel 
dimension types based on degree of devi-
ation from reference surface. 
After tidying up the reference surface 

provided by the designer into a base hexag-
onal mesh comprising of local hexagonal ele-
ments of wildly different dimensions, a phys-
ics simulation engine was used to introduce 
weighted force objects over the base hexag-
onal mesh as a spring system. 

The following force objects have been 
introduced in the system for iterative opti-
mization (see Figure 3):
• Equalizer: to reduce the dimensional  

variations among the local hexagon-
al elements and thereby maximize the 
possibility of fitting standard hexagonal 
elements on the surface within the pre-
scribed tolerance.

• Planarity: to maximize the possibility of 
fitting planar hexagonal elements Hp in 
the subsequent step. If planarity cannot 
be achieved, panels of standard dimen-
sions are assumed to be folded in the sub-
sequent panel-fitting stage. 

• Gravity: This force object pushes all 
vertices across the mesh towards the ref-
erence surface, which helped ensure that 
the mesh resulted from the iterative opti-
mization would resemble the reference 
surface. 
These force objects were plugged into a 

proprietary solver, which iteratively negotiat-
ed and simulated these opposing influences 
across the global mesh to look for equilib-
rium. The number of iterations required to 
reach equilibrium was very much a process of 
trial and error – in this case the results after 
20,000 iterations were used for the subse-
quent step.

The local hexagonal elements on the out-
put hexagonal mesh are neither standardized 
nor planar yet – having gone through all the 
pushing and pulling in the iterative process 
the local hexagonal elements have merely got 
closer, to varying degrees, to being standard-
ized and being planarized. Using that mesh 
as the basis and using deviation from refer-
ence surface and joint width as fitting criteria, 
a set of standard-sized, flat equilateral hexa-
gon panels were fitted at the centroid of each 
local hexagonal element. 

The methodology described above was 
applied on all four surfaces concerned in the 
project, each with slightly adjusted param-
eters to suit the size, curvature, and architec-
tural constraints of each of these global sur-
faces. The results above have demonstrated 
that the approach was highly effective (see 
Figure 3) – taking one of the roof surfaces as 
an example, 98.8 per cent of the 13,717 hex-
agonal panels on the surface ended up falling 
into 19 panel types; only 146 panels had to 
be customized due to architectural openings 
and other atypical conditions.

CONCLUSION
This article has described the three meth-

odologies for discretizing free-form archi-
tectural surfaces for panelization: top-down, 
bottom-up, and bi-directional. The choice 
of methodology to adopt, as the case stud-
ies above have shown, varies depending on 
the building geometry, material selection, 
design intent and performance objectives. It 
is therefore advisable for the team to set up 
parametric systems that can automate mul-
tiple options early in the design stage to allow 
stakeholders to review, assess, and make in-
formed design decisions based on actionable 
information.  n
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